Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2022 ; 2022.
Article in English | Scopus | ID: covidwho-20234921

ABSTRACT

An increase in interest in research projects which involves the design of robotic systems that minimizes interactions between humans has been caused by the COVID-19 outbreak, as such technology can greatly benefit healthcare industries in preventing the spread of highly infectious diseases. The utilization of remote-controlled robots in many different fields, especially in the medical field is becoming more and more necessary. However, mobile robots are susceptible to both systematic and nonsystematic errors that cause deviations in its trajectory. In view thereof, the researchers explored the possibility of minimizing the trajectory errors through speed calibration. The differential drive robot was navigated to finish a five-meter linear path of forward and backward motion. The test was conducted with a default linear speed of 0.5 m/s in which a high trajectory error was observed. Upon changing the speed of the robot, the same trajectory test was conducted at four additional different speeds, namely;0.25 m/s, 0.35 m/s, 0.65m/s and 0.75 m/s. With the gathered data, the researchers conducted a linear least-squares regression model using MATLAB wherein there is only one predictor variable (speed of the robot) and one response variable (deviation). Based on the results, the researchers concluded that the speed of 0.35 m/s is the optimal speed in which the trajectory error of the robot is minimal. The researchers recommend improving the design of the caster wheels to minimize the effects of nonsystematic errors. © 2022 IEEE.

2.
19th IEEE International Colloquium on Signal Processing and Its Applications, CSPA 2023 ; : 128-133, 2023.
Article in English | Scopus | ID: covidwho-2314144

ABSTRACT

There has been an increase of interest and demand in the usage of logistic indoor service robots that are designed to minimize interactions between humans due to the occurrence of the COVID-19 outbreak. The application of the rising technology in the medical sector has great benefits in the industry, such as the prevention of the spread of highly infectious diseases using distance as a factor. Rooting from the purpose of the said robot, the main focus should be the ease of navigation through achieving the desired trajectory, in order to maximize the functionality, prevent collision, reduce user maneuvering difficulties, and such. Hence, this paper is focused on improving the trajectory errors on the robot navigation performance based on different control system designs specifically, a physical joystick controller and a mobile-based Bluetooth application controller. The design of the joystick is based on a pivot as its base which is directed to all angles and the design of the Bluetooth app is based on fourdirectional buttons that will operate upon clicking, and switching to other buttons to change commands. With this, the researchers conducted linear path and rotational tests using both remote control modes that are based on five varying speed values of 0.75 m/s, 0.5m/s, 0.35m/s, 0.25m/s, and 0.15 m/s. Based on the data analysis, the yielded results showed that using the Bluetooth app lowers the robot's trajectory error by 50% to 60% compared to using ajoystick to navigate to the desired point. Thus, the researchers concluded that the design of a control system greatly affects the robot navigation in achieving the desired trajectory. Considering the nonsystematic errors, a calibration based on the hardware structure design specifically on the caster wheel is recommended. © 2023 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL